2 research outputs found

    Unsupervised pattern discovery in speech : applications to word acquisition and speaker segmentation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.Includes bibliographical references (p. 167-176).We present a novel approach to speech processing based on the principle of pattern discovery. Our work represents a departure from traditional models of speech recognition, where the end goal is to classify speech into categories defined by a pre-specified inventory of lexical units (i.e. phones or words). Instead, we attempt to discover such an inventory in an unsupervised manner by exploiting the structure of repeating patterns within the speech signal. We show how pattern discovery can be used to automatically acquire lexical entities directly from an untranscribed audio stream. Our approach to unsupervised word acquisition utilizes a segmental variant of a widely used dynamic programming technique, which allows us to find matching acoustic patterns between spoken utterances. By aggregating information about these matching patterns across audio streams, we demonstrate how to group similar acoustic sequences together to form clusters corresponding to lexical entities such as words and short multi-word phrases. On a corpus of academic lecture material, we demonstrate that clusters found using this technique exhibit high purity and that many of the corresponding lexical identities are relevant to the underlying audio stream.(cont.) We demonstrate two applications of our pattern discovery procedure. First, we propose and evaluate two methods for automatically identifying sound clusters generated through pattern discovery. Our results show that high identification accuracy can be achieved for single word clusters using a constrained isolated word recognizer. Second, we apply acoustic pattern matching to the problem of speaker segmentation by attempting to find word-level speech patterns that are repeated by the same speaker. When used to segment a ten hour corpus of multi-speaker lectures, we found that our approach is able to generate segmentations that correlate well to independently generated human segmentations.by Alex Seungryong Park.Ph.D

    Methods for noise robust speaker identification and verification

    No full text
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 77-79).by Alex S. Park.M.Eng
    corecore